Hauptinhalt

English translation

Differentialgeometrie II
(engl. Differential Geometry II)

Niveaustufe, VerpflichtungsgradVertiefungsmodul, Wahlpflichtmodul
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (4 SWS), Übung (2 SWS),
270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
9 LP
Studienleistung: Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben.
Prüfungsleistung: Klausur oder mündliche Prüfung
Sprache,
Benotung
Deutsch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik.
Exportfach, UrsprungMathematik, M.Sc. Mathematik / Vertiefungsbereich Mathematik
Dauer des Moduls,
Häufigkeit
Ein Semester,
Regelmäßig im Wechsel mit anderen Vertiefungsmodulen im Gebiet Analysis/Geometrie
Modulverantwortliche(r)Prof. Dr. Ilka Agricola

Inhalt

Mindestens einer der folgenden Themenkomplexe:

  • Differentialgeometrie von Lie-Gruppen sowie symmetrischen und homogenen Räumen
  • Symplektische Geometrie und theoretische Mechanik
  • Hauptfaserbündel und Eichfeldtheorie
  • Allgemeine Relativitätstheorie und pseudo-Riemann'sche Mannigfaltigkeiten
  • Spin-Geometrie und elliptische Differentialoperatoren auf Mannigfaltigkeiten

Qualifikationsziele

Die Studierenden sollen ihre geometrischen Kenntnisse vertiefen und physikalische Anwendungen kennenlernen, moderne Techniken für das wissenschaftliche Arbeiten in diesem Gebiet erlernen, mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung), in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.


Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und in den Aufbaumodulen Algebra sowie Funktionentheorie und Vektoranalysis vermittelt werden, sowie Grundkenntnisse der Differentialgeometrie.


Literatur

  • Th. Friedrich, Dirac-Operatoren in der Riemannschen Geometrie,
  • Vieweg. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, AMS. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry 1 & 2, Wiley Classics Library. Michael Spivak, A comprehensive introduction to differential geometry, Berkeley, California: Publish Perish, Inc.



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2018/19 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.