Main content
This entry is from Winter semester 2018/19 and might be obsolete. You can find a current equivalent here.
Algebraic Lie Theory
(dt. Algebraische Lie-Theorie)
Level, degree of commitment | Specialization module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement(s): Written or oral examination Examination type: Successful completion of at least 50 percent of the points from the weekly exercises. |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics. |
Duration, frequency |
One semester, Regularly alternating with other specialization modules in Reiner Mathematics |
Person in charge of the module's outline | Prof. Dr. István Heckenberger |
Contents
Depending on the course.
The focus is on the intensive investigation of a special class of algebraic structures (algebraic groups, Kac-Moody algebras, Hopf algebras) directly related to Lie theory. In addition to structural theory and classification results, links to other theories are also shown.
Qualification Goals
The students shall
- get an insight into a current field of research,
- learn the basic structures and techniques of algebraic Lie theory,
- understand abstract algebraic structures as symmetries,
- practice mathematical working methods (development of mathematical intuition and its formal justification, training of abstraction and formulating proofs),
- Improve their oral communication skills in the tutorials by practicing free speech in front of an audience and during discussion.
Prerequisites
Translation is missing. Here is the German original:
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und in dem Aufbaumodul Algebra vermittelt werden.
Applicability
Module imported from M.Sc. Mathematics.
It can be attended at FB12 in study program(s)
- B.Sc. Mathematics
- M.Sc. Computer Science
- M.Sc. Mathematics
- LAaG Mathematics
When studying LAaG Mathematics, this module can be attended in the study area Advanced Modules.
Die Wahlmöglichkeit des Moduls ist dadurch beschränkt, dass es der Reinen Mathematics zugeordnet ist.
Recommended Reading
- Depending on the course.
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2018/19. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.