Main content

This entry is from Winter semester 2018/19 and might be obsolete. You can find a current equivalent here.

Numerical Solution Methods for Differential Equations
(dt. Numerik von Differentialgleichungen)

Level, degree of commitment Specialization module, compulsory elective module
Forms of teaching and learning,
workload
Lecture (4 SWS), recitation class (2 SWS),
270 hours (90 h attendance, 180 h private study)
Credit points,
formal requirements
9 CP
Course requirement(s): Written or oral examination
Examination type: Successful completion of at least 50 percent of the points from the weekly exercises.
Language,
Grading
German,
The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics.
Duration,
frequency
One semester,
Jedes zweite Wintersemester
Person in charge of the module's outline Prof. Dr. Stephan Dahlke

Contents

Supplementary fundamentals to differential equations, methods for ordinary initial and boundary value problems, e.g. also for stiff problems. Standard method for partial differential equations.


Qualification Goals

The students shall

  • generally learn to assess numerical methods in terms of applicability and usefulness,
  • be introduced to the discretization of differential equations, including methods for estimating and controlling the unavoidable approximation errors,
  • to know the classification of different problem forms in differential equations and the appropriate selection of methods,
  • recognise how strongly theoretical analysis determines the framework conditions for numerical methods; in particular, the importance of functional analytical concepts for numerical problems should become clear,
  • practice mathematical working methods (development of mathematical intuition and its formal justification, training of abstract assets, proof techniques),
  • improve their oral communication skills in the exercises by practicing free speech in front of an audience and during discussi

Prerequisites

Translation is missing. Here is the German original:

Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Aufbaumodul Numerische Basisverfahren vermittelt werden.


Applicability

The module can be attended at FB12 in study program(s)

  • B.Sc. Mathematics
  • B.Sc. Business Mathematics
  • M.Sc. Data Science
  • M.Sc. Computer Science
  • M.Sc. Mathematics
  • M.Sc. Business Mathematics
  • LAaG Mathematics

When studying M.Sc. Mathematics, this module can be attended in the study area Specialization Modules in Mathematics.

The module can also be used in other study programs (export module).

Die Wahlmöglichkeit des Moduls ist dadurch beschränkt, dass es der Angewandten Mathematics zugeordnet ist.


Recommended Reading

  • Deuflhard, P., Bornemann, F.: Numerische Mathematik II, de Gruyter 2002;
  • Strehmel, K., Weiner, R.: Numerik gewöhnlicher Differentialgleichungen, Teubner, 1995;
  • Hanke-Bourgeois, M.: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Teubner, 2002.



Please note:

This page describes a module according to the latest valid module guide in Winter semester 2018/19. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:

The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.

The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.