Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2018/19 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.
M.Sc. Wirtschaftsmathematik — Mathematische Vertiefungs- und Praxismodule
In diesem Studienbereich sind Module im Umfang von insgesamt 33 LP auszuwählen. Die Anzahl der Module zur Reinen Mathematik (mit einem „R“ gekennzeichnet) wird dadurch beschränkt, dass mindestens 18 LP in Modulen zur Angewandten Mathematik („A“) zu absolvieren sind. Zur Angewandten Mathematik muss dabei auch ein Vertiefungsmodul aus der Stochastik gewählt werden, sofern nicht bereits im Bachelor ein solches Modul belegt wurde. Es darf höchstens ein Aufbaumodul eingebracht werden. Darüber hinaus muss eines der drei Praktika absolviert werden.
Liste der Module in diesem Studienbereich:
Sortierung: alphabetisch, nach Merkmal, nach Niveau und LP
Ohne Merkmal
- Fortgeschrittenes Wirtschaftsmathematisches Praktikum (Praxismodul, 6 LP)
- Industriepraktikum (Praxismodul, 6 LP)
- Praktikum zur Stochastik (Praxismodul, 6 LP)
Merkmal A
- Adaptive Numerische Verfahren für Operatorgleichungen (Vertiefungsmodul, 6 LP, A)
- Angewandte Funktionalanalysis (Vertiefungsmodul, 9 LP, A)
- Approximationstheorie (Vertiefungsmodul, 9 LP, A)
- Asymptotische Statistik (Vertiefungsmodul, 3 LP, A)
- Compressive Sensing (Vertiefungsmodul, 6 LP, A)
- Computer Aided Geometric Design (Vertiefungsmodul, 6 LP, A)
- Elementare Stochastik (Aufbaumodul, 9 LP, A)
- Endliche Frames (Vertiefungsmodul, 6 LP, A)
- Extremwerttheorie (Vertiefungsmodul, 6 LP, A)
- Großes Aufbaumodul Numerik/Optimierung (Aufbaumodul, 9 LP, A)
- Großes Aufbaumodul Stochastik (Aufbaumodul, 9 LP, A)
- Großes Vertiefungsmodul Numerik/Optimierung (Vertiefungsmodul, 9 LP, A)
- Großes Vertiefungsmodul Optimierung (Vertiefungsmodul, 9 LP, A)
- Großes Vertiefungsmodul Stochastik (Vertiefungsmodul, 9 LP, A)
- Hochdimensionale Statistik (Vertiefungsmodul, 6 LP, A)
- Kleines Aufbaumodul Numerik/Optimierung (Aufbaumodul, 6 LP, A)
- Kleines Aufbaumodul Stochastik (Aufbaumodul, 6 LP, A)
- Kleines Vertiefungsmodul Numerik/Optimierung (Vertiefungsmodul, 6 LP, A)
- Kleines Vertiefungsmodul Optimierung (Vertiefungsmodul, 6 LP, A)
- Kleines Vertiefungsmodul Stochastik (Vertiefungsmodul, 6 LP, A)
- Kleines Vertiefungsmodul Stochastik ohne Tutorium (Vertiefungsmodul, 3 LP, A)
- Konvexe Optimierung in Banachräumen (Vertiefungsmodul, 6 LP, A)
- Lineare Optimierung (Aufbaumodul, 9 LP, A)
- Mathematische Datenanalyse (Aufbaumodul, 9 LP, A)
- Mathematische Statistik (Vertiefungsmodul, 9 LP, A)
- Nichtglatte Optimierung (Vertiefungsmodul, 6 LP, A)
- Nichtlineare Optimierung (Vertiefungsmodul, 9 LP, A)
- Nichtparametrische Statistik (Vertiefungsmodul, 6 LP, A)
- Numerik (Numerische Basisverfahren) (Aufbaumodul, 9 LP, A)
- Numerik endlichdimensionaler Probleme (Vertiefungsmodul, 9 LP, A)
- Numerik von Differentialgleichungen (Vertiefungsmodul, 9 LP, A)
- Numerische Behandlung elliptischer partieller Differentialgleichungen (Vertiefungsmodul, 6 LP, A)
- Optimierung bei partiellen Differentialgleichungen (Vertiefungsmodul, 6 LP, A)
- Probabilistische Kombinatorik (Vertiefungsmodul, 9 LP, A)
- Quantitatives Risikomanagement (Vertiefungsmodul, 6 LP, A)
- Regularitätstheorie elliptischer partieller Differentialgleichungen (Vertiefungsmodul, 6 LP, A)
- Spezialverfahren für Anfangswertprobleme (Vertiefungsmodul, 6 LP, A)
- Statistik (Aufbaumodul, 6 LP, A)
- Stochastische Analysis (Vertiefungsmodul, 9 LP, A)
- Stochastische Optimierung (Vertiefungsmodul, 6 LP, A)
- Stochastische Prozesse (Vertiefungsmodul, 6 LP, A)
- Wahrscheinlichkeitstheorie (Vertiefungsmodul, 9 LP, A)
- Waveletanalysis I (Vertiefungsmodul, 6 LP, A)
- Waveletanalysis II (Vertiefungsmodul, 6 LP, A)
- Zeitreihenanalyse (Vertiefungsmodul, 6 LP, A)
Merkmal R
- Diskrete Geometrie (Aufbaumodul, 6 LP, R)
- Fourier-Integraloperatoren (Vertiefungsmodul, 9 LP, R)
- Funktionalanalysis (Vertiefungsmodul, 9 LP, R)
- Partielle Differentialgleichungen (Vertiefungsmodul, 9 LP, R)
Bitte beachten Sie:
Diese Seite gilt für die im Wintersemester 2018/19 aktuellsten Prüfungsordnungen. Wenn Sie Ihr Studium nach einer früheren oder späteren Prüfungsordnung absolvieren, gelten gegebenenfalls andere Bestimmungen:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24 (kein Äquivalent)
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.