Hauptinhalt

English translation

Algorithmische und Angewandte Algebraische Geometrie (Kleines Vertiefungsmodul)
(engl. Applied Algebraic Geometry (Small Specialization Module))

Niveaustufe, VerpflichtungsgradVertiefungsmodul, Wahlpflichtmodul
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (3 SWS), Übung (1 SWS) oder Vorlesung (2 SWS), Seminar (2 SWS),
180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
6 LP
Studienleistung: Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben oder Vortrag mit schriftlicher Ausarbeitung.
Prüfungsleistung: Klausur oder mündliche Prüfung
Sprache,
Benotung
Deutsch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik.
Exportfach, UrsprungMathematik, M.Sc. Mathematik / Vertiefungsbereich Mathematik
Dauer des Moduls,
Häufigkeit
Ein Semester,
Unregelmäßig
Modulverantwortliche(r)Prof. Dr. Volkmar Welker

Inhalt

Es werden algorithmische Methoden der algebraischen Geometrie vorgestellt (z.B. Gröbner-Basen). Neben theoretischen Grundlagen und Algorithmen können auch beispielhafte Anwendungen erläutert werden (z.B. in der Optimierung, Statistik, algorithmischen Komplexität, etc.).


Qualifikationsziele

Die Studierenden können

  • algorithmischen Methoden in kommutativen Ringen verstehen,
  • die algorithmischen Methoden zur Analyse und Lösung von Problemen der angewandten Mathematik verwenden,
  • Probleme der angewandten Mathematik als Problem polynomialer Gleichungssystem (bzw. affiner oder projektiver Varietäten) formulieren.

Sie vertiefen

  • die Einübung mathematischer Arbeitsweisen (Entwicklung mathematischer Intuition und deren formale Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
  • in den Übungen ihre mündliche Kommunikationsfähigkeit durch Diskussion und freie Rede vor einem Publikum.

Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Aufbaumodul Algebra vermittelt werden.


Literatur

  • W.W. Adams, P. Loustaunau, An introduction to Gröbner bases, AMS, 1994.
  • G. Blekherman, P.A. Parillo, R. Thomas, Semidefinite optimization and convex algebraic geometry, SIAM, 2013.
  • M. Drton, B. Sturmfels, S. Sullivant, Lectures on algebraic statistics, Birkhäuser, 2010.
  • J.M. Landsberg, Tensors and applications, AMS, 2012.



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2019/20 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.