Main content
This entry is from Winter semester 2021/22 and might be obsolete. No current equivalent could be found.
Computer Aided Geometric Design
(dt. Computer Aided Geometric Design)
Level, degree of commitment | Specialization module, depends on importing study program |
Forms of teaching and learning, workload |
Lecture (3 SWS), recitation class (1 SWS), 180 hours (60 h attendance, 120 h private study) |
Credit points, formal requirements |
6 CP Course requirement(s): Successful completion of at least 50 percent of the points from the weekly exercises. Examination type: Oral examination |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics. |
Subject, Origin | Mathematics, M.Sc. Mathematics |
Duration, frequency |
One semester, Regularly alternating with other specialization modules |
Person in charge of the module's outline | Prof. Dr. Stephan Dahlke |
Contents
Practical methods for the representation of curves and surfaces, such as Bezier polynomials and splines, surface representations with tensor products and triangular decompositions.
Qualification Goals
The students shall
- recognize that non-mathematical requirements, such as manageability, can influence the selection of function classes in practical use,
- learn to recognize and assess the relevance of computer graphic methods for practical problems, e.g. in engineering, and to acquire the tools to solve these problems,
- to recognize the relations of CAGD to other areas of mathematics, such as numerical analysis or differential geometry,
- practice mathematical working methods (development of mathematical intuition and its formal justification, training of the ability to abstract, proof techniques),
- improve their oral communication skills in the exercises by practicing free speech in front of an audience and during discussion.
Prerequisites
None. The competences taught in the following modules are recommended: either Foundations of Mathematics and Linear Algebra I and Linear Algebra II or Basic Linear Algebra, either Analysis I and Analysis II or Basic Real Analysis, Numerical Analysis.
Recommended Reading
- Barnhill, R.E., Riesenfeld, R.F.: Computer Aided Geometric Design, Academic Press;
- Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Academic Press.
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2021/22. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24 (no corresponding element)
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.