Hauptinhalt

Algebraische Geometrie: Einführung
(engl. Algebraic Geometry: Introduction)

Niveaustufe, Verpflichtungsgrad Aufbaumodul, Wahlpflichtmodul
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung mit Übungen (4 SWS),
180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
6 LP
Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben.
Prüfungsleistung: Klausur oder mündliche Prüfung (Einzelprüfung)
Sprache,
Benotung
Deutsch/Englisch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang B.Sc. Mathematik.
Dauer des Moduls,
Häufigkeit
Ein Semester,
Unregelmäßig
Modulverantwortliche(r) Prof. Dr. Sönke Rollenske

Inhalt

Algebraische Varietäten: Affine und projektive Varietäten, Hilbertscher Nullstellensatz, Singularitäten, Tangentialräume und Dimension

Morphismen von Varietäten: Reguläre und rationale Funktionen und Abbildungen, Aufblasungen und Auflösung von Singularitäten

Geometrische Anwendungen: Linearsysteme ebener Kurven, kubische Flächen im Raum


Qualifikationsziele

Die Studierenden

  • können algebraische Methoden zur Beschreibung von geometrischen Objekten (algebraischen Varietäten) anwenden,
  • verstehen den Übersetzungsprozess Geometrie-Algebra-Geometrie und können ihn auf gestellte Probleme anwenden,
  • haben erfahren, wie geometrische Fragestellungen durch den Einsatz abstrakter algebraischer Techniken bewältigt werden können,
  • haben ihre Fähigkeit zur Abstraktion ausgebaut,
  • haben in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessert.

Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in den mathematischen Basismodulen und im Aufbaumodul Algebra vermittelt werden.


Verwendbarkeit

Importmodul aus dem B.Sc. Mathematik.

Dieses Modul ist Bestandteil des dezentralen Angebots der Marburg Skills (MarSkills).


Literatur

  • Hulek, K.: Elementare Algebraische Geometrie, Vieweg
  • Shafarevich, I.R.: Basic Algebraic Geometry, Springer



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

  • WiSe 2016/17 (kein Äquivalent)
  • SoSe 2018 (kein Äquivalent)
  • WiSe 2018/19 (kein Äquivalent)
  • WiSe 2019/20 (kein Äquivalent)
  • WiSe 2020/21 (kein Äquivalent)
  • SoSe 2021 (kein Äquivalent)
  • WiSe 2021/22 (kein Äquivalent)
  • WiSe 2022/23 (kein Äquivalent)
  • WiSe 2023/24

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.