Hauptinhalt
Elementare Zahlentheorie
(engl. Elementary Number Theory)
Niveaustufe, Verpflichtungsgrad | Aufbaumodul, Wahlpflichtmodul |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (3 SWS), Übung (1 SWS) oder Vorlesung (2 SWS), Übung (2 SWS), 180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
6 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung (Einzelprüfung) |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang B.Sc. Mathematik. |
Dauer des Moduls, Häufigkeit |
Ein Semester, Regelmäßig im Wechsel mit anderen Aufbaumodulen |
Modulverantwortliche(r) | Prof. Dr. Sönke Rollenske, Prof. Dr. István Heckenberger |
Inhalt
- Euklidischer Algorithmus und größte gemeinsame Teiler
- Kettenbrüche
- Dirichlet-Faltung und Möbius-Inversion
- Primzahlen und Kryptographie
- Chinesischer Restsatz
- lineare Kongruenzgleichungen
- Primitivwurzel
Qualifikationsziele
Die Studierenden
- haben die Grundlagen der klassischen Zahlentheorie erlernt,
- können konkrete Probleme über Zahlen in einem geeigneten abstrakten Umfeld formulieren und die Methoden des Umfeldes anwenden,
- erkennen die Querverbindungen zu Methoden der Algebra,
- haben mathematische Arbeitsweisen eingeübt (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- haben in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessert.
Voraussetzungen
Keine. Empfohlen werden Kenntnisse aus dem Basismodul Grundlagen der Mathematik.
Verwendbarkeit
Importmodul aus dem B.Sc. Mathematik.
Dieses Modul ist Bestandteil des dezentralen Angebots der Marburg Skills (MarSkills).
Literatur
- Oswald, N., Steuding, J., Elementare Zahlentheorie, Springer, 2014
- Remmert, R., Ullrich, P., Elementare Zahlentheorie, Springer, 2008
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17 (kein Äquivalent)
- SoSe 2018 (kein Äquivalent)
- WiSe 2018/19 (kein Äquivalent)
- WiSe 2019/20 (kein Äquivalent)
- WiSe 2020/21 (kein Äquivalent)
- SoSe 2021 (kein Äquivalent)
- WiSe 2021/22 (kein Äquivalent)
- WiSe 2022/23 (kein Äquivalent)
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.