Main content
Fourier Integral Operators
(dt. Fourier-Integraloperatoren)
Level, degree of commitment | Specialization module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement(s): Successful completion of at least 50 percent of the points from the weekly exercises. Examination type: Written or oral examination (individual examination) |
Language, Grading |
English,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics. |
Duration, frequency |
One semester, Regularly alternating with other specialization modules im Gebiet Analysis |
Person in charge of the module's outline | Prof. Dr. Pablo Ramacher |
Contents
- Oscillatory integrals
- Fourier integral operators and pseudo-differential operators in Euclidean space
- Pseudo-differential operators on manifolds and their spectral theory, Sobolev spaces
- Hamilton-Jacobi theory, symplectic geometry, Lagrangian submanifolds
- Global theory of Fourier integral operators on manifolds
Qualification Goals
Students will
- Are familiar with the theory of Fourier integral operators as a central area of calculus and can use it,
- have been introduced to questions of current research,
- can apply knowledge from functional analysis, Fourier and distribution theory to the modern theory of partial differential equations,
- have deepened mathematical working methods (developing mathematical intuition and its formal justification, abstraction, proof),
- have improved their oral communication skills in exercises by practicing free speech in front of an audience and in discussion.
Prerequisites
None. The competences taught in the following modules are recommended: either Analysis I and Analysis II or Basic Real Analysis, Complex Analysis and Vector Analysis, Functional Analysis, Partial Differential Equations.
Applicability
Module imported from M.Sc. Mathematics.
It can be attended at FB12 in study program(s)
- B.Sc. Mathematics
- M.Sc. Mathematics
- M.Sc. Business Mathematics
When studying B.Sc. Mathematics, this module can be attended in the study area Compulsory Elective Modules in Mathematics.
Recommended Reading
- Shubin, M. A., Pseudodifferential operators and spectral theory; Grigis, A. and Sjoestrand, J., Microlocal analysis for differential operators; Duistermaat, J.J., Fourier integral operators.
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2023/24. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17 (no corresponding element)
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.