Hauptinhalt

Algebren und Darstellungen
(engl. Algebras and their Representations)

Niveaustufe, Verpflichtungsgrad Vertiefungsmodul, Wahlpflichtmodul
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (4 SWS), Übung (2 SWS),
270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
9 LP
Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben.
Prüfungsleistung: Klausur oder mündliche Prüfung (Einzelprüfung)
Sprache,
Benotung
Englisch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik.
Dauer des Moduls,
Häufigkeit
Ein Semester,
Regelmäßig im Wechsel mit anderen Vertiefungsmodulen
Modulverantwortliche(r) Prof. Dr. István Heckenberger

Inhalt

  • Grundlagen der Theorie assoziativer Algebren
  • artinsche, noethersche und halbeinfache Moduln
  • halbeinfache Algebren und der Satz von Wedderburn
  • Zerlegungstheorie für Moduln
  • projektive Moduln von rechtsartinschen Algebren
  • Köcher von rechtsartinschen Algebren
  • Köcherdarstellungen

Qualifikationsziele

Die Studierenden

  • verstehen Anfänge der Theorie der nichtkommutativen Algebren und ihrer Darstellungen,
  • können ihre Fertigkeiten im Umgang mit Matrizen in einen abstrakteren Kontext übertragen,
  • verstehen Matrizen als Spezialfall von abstrakten algebraischen Strukturen,
  • haben mathematische Arbeitsweisen (Entwickeln von mathematischer Intuition und deren formaler Begründung, Abstraktion, Beweisführung) vertieft,
  • haben in der Vorlesung und in den Tutorien ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessert.

Voraussetzungen

keine; empfohlen werden Kenntnisse aus dem Modul Algebra


Verwendbarkeit

Importmodul aus dem M.Sc. Mathematik.

Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen

  • B.Sc. Mathematik
  • B.Sc. Wirtschaftsmathematik
  • M.Sc. Mathematik
  • M.Sc. Wirtschaftsmathematik
  • LAaG Mathematik

Im Studiengang B.Sc. Mathematik kann das Modul im Studienbereich Mathematik Wahlpflichtmodule absolviert werden.


Literatur

  • R. S. Pierce, Associative Algebras, Springer, 1982
  • I. Assem, D. Simson, A. Skowro´nski, Elements of the Representation Theory of Associative Algebras, LMS Student Texts 65, 2006



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

  • WiSe 2016/17 (kein Äquivalent)
  • SoSe 2018 (kein Äquivalent)
  • WiSe 2018/19 (kein Äquivalent)
  • WiSe 2019/20 (kein Äquivalent)
  • WiSe 2020/21 (kein Äquivalent)
  • SoSe 2021 (kein Äquivalent)
  • WiSe 2021/22 (kein Äquivalent)
  • WiSe 2022/23 (kein Äquivalent)
  • WiSe 2023/24

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.