Hauptinhalt

Numerik von Differentialgleichungen
(engl. Numerical Solution Methods for Differential Equations)

Niveaustufe, Verpflichtungsgrad Vertiefungsmodul, Wahlpflichtmodul
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (4 SWS), Übung (2 SWS),
270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
9 LP
Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben.
Prüfungsleistung: Klausur oder mündliche Prüfung (Einzelprüfung)
Sprache,
Benotung
Englisch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik.
Dauer des Moduls,
Häufigkeit
Ein Semester,
Jedes zweite Wintersemester
Modulverantwortliche(r) Prof. Dr. Christian Rieger

Inhalt

Ergänzende Grundlagen zu Differentialgleichungen, Verfahren für gewöhnliche Anfangs- und Randwertprobleme, z.B. auch für steife Probleme. Standardverfahren für partielle Differentialgleichungen.


Qualifikationsziele

Die Studierenden

  • können numerische Verfahren in Bezug auf Anwendbarkeit und Zweckmäßigkeit einschätzen,
  • haben einen Einblick in die Diskretisierung von Differentialgleichungen erhalten, unter Einschluss von Methoden zur Schätzung und Steuerung der unvermeidlichen Approximationsfehler,
  • kennen die Klassifikation verschiedener Problemformen bei Differentialgleichungen und eine angemessene Auswahl von Verfahren,
  • erkennen, wie stark die theoretische Analyse die Rahmenbedingungen für numerische Verfahren festlegt
  • verstehendie Bedeutung funktionalanalytischer Konzepte für numerische Fragestellungen,
  • haben mathematische Arbeitsweisen(Entwickeln von mathematischer Intuition und deren formaler Begründung, Abstraktion, Beweisführung) vertieft,
  • haben in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessert.

Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in den mathematischen Basismodulen und im Aufbaumodul Numerische Basisverfahren vermittelt werden.


Verwendbarkeit

Importmodul aus dem M.Sc. Mathematik.

Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen

  • B.Sc. Mathematik
  • B.Sc. Wirtschaftsmathematik
  • M.Sc. Data Science
  • M.Sc. Informatik
  • M.Sc. Mathematik
  • M.Sc. Wirtschaftsmathematik
  • LAaG Mathematik

Im Studiengang B.Sc. Mathematik kann das Modul im Studienbereich Mathematik Wahlpflichtmodule absolviert werden.


Literatur

  • Deuflhard, P., Bornemann, F.: Numerische Mathematik II, de Gruyter 2002;
  • Strehmel, K., Weiner, R.: Numerik gewöhnlicher Differentialgleichungen, Teubner, 1995;
  • Hanke-Bourgeois, M.: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Teubner, 2002.



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.