Main content

Noncommutative Algebra
(dt. Nichtkommutative Algebra)

Level, degree of commitment Specialization module, compulsory elective module
Forms of teaching and learning,
workload
Lecture (4 SWS), recitation class (2 SWS),
270 hours (90 h attendance, 180 h private study)
Credit points,
formal requirements
9 CP
Course requirement(s): Successful completion of at least 50 percent of the points from the weekly exercises.
Examination type: Written or oral examination (individual examination)
Language,
Grading
English,
The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics.
Duration,
frequency
One semester,
Regularly alternating with other specialization modules
Person in charge of the module's outline Prof. Dr. István Heckenberger

Contents

Depending on the course.

Basic concepts and established results in the field of non-commutative algebra (structure theory, special classes of non-commutative algebras) and their connections to other mathematical structures such as group theory and Lie theory are presented.


Qualification Goals

Students

  • Have gained insight into a current area of research,
  • understand the basic structures and techniques of noncommutative algebra,
  • have been confronted with unfamiliar abstract mathematical concepts, which they have gradually been able to better understand and apply through examples and sentences,
  • have deepened mathematical ways of working (developing mathematical intuition and its formal justification, abstraction, proof),
  • have improved their oral communication skills in tutorials by practicing free speech in front of an audience and in discussion.

Prerequisites

None. The competences taught in the following modules are recommended: either Foundations of Mathematics and Linear Algebra I and Linear Algebra II or Basic Linear Algebra, either Analysis I and Analysis II or Basic Real Analysis, Algebra.


Applicability

Module imported from M.Sc. Mathematics.

It can be attended at FB12 in study program(s)

  • B.Sc. Mathematics
  • M.Sc. Computer Science
  • M.Sc. Mathematics
  • LAaG Mathematics

When studying LAaG Mathematics, this module can be attended in the study area Advanced Modules.

The module is assigned to Pure Mathematics. Further information on eligibility can be found in the description of the study area.


Recommended Reading

  • Depending on the course.



Please note:

This page describes a module according to the latest valid module guide in Winter semester 2023/24. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:

The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.

The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.