Hauptinhalt

Kommutative Algebra (Großes Vertiefungsmodul)
(engl. Commutative Algebra (Large Specialization Module))

Niveaustufe, Verpflichtungsgrad Vertiefungsmodul, Wahlpflichtmodul
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (4 SWS), Übung (2 SWS),
270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
9 LP
Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben.
Prüfungsleistung: Klausur oder mündliche Prüfung (Einzelprüfung)
Sprache,
Benotung
Englisch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik.
Dauer des Moduls,
Häufigkeit
Ein Semester,
Unregelmäßig
Modulverantwortliche(r) Prof. Dr. Volkmar Welker, Prof. Dr. Sönke Rollenske

Inhalt

Es werden grundlegende algebraische oder homologische Invarianten von kommutativen Ringen eingeführt. Methoden zu deren Analyse und deren Verhalten unter klassischen Ringkonstruktionen werden untersucht. Zentrale Sätze der Theorie der kommutativen Ringe werden vorgestellt.


Qualifikationsziele

Die Studierenden

  • erfassen die grundlegenden Eigenschaften kommutativer Ringe,
  • können algebraische oder homologische Methoden zur Analyse von kommutativen Ringen anwenden,
  • verstehen Konstruktionsmethoden von kommutativen Ringen verstehen und können diese anwenden.
  • haben mathematische Arbeitsweisen (Entwicklung mathematischer Intuition und deren formale Begründung, Abstraktion, Beweisführung) vertieft,
  • haben in den Übungen ihre mündliche Kommunikationsfähigkeit durch Diskussion und freie Rede vor einem Publikum verbessert.

Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in den mathematischen Basismodulen und dem Modul Algebra vermittelt werden.


Verwendbarkeit

Importmodul aus dem M.Sc. Mathematik.

Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen

  • B.Sc. Mathematik
  • M.Sc. Informatik
  • M.Sc. Mathematik
  • LAaG Mathematik

Im Studiengang M.Sc. Informatik kann das Modul im Studienbereich Profilbereich Mathematik absolviert werden.


Literatur

  • M. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1994.
  • D. Eisenbud, Commutative Algebra with a view toward algebraic geometry, Springer, 1995.



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.