Main content
Small Specialization Module Analysis/Topology
(dt. Kleines Vertiefungsmodul Analysis/Topologie)
Level, degree of commitment | Specialization module, depends on importing study program |
Forms of teaching and learning, workload |
Lecture mit recitation classen (4 SWS), 180 hours (60 h attendance, 120 h private study) |
Credit points, formal requirements |
6 CP Course requirement(s): Successful completion of at least 50 percent of the points from the weekly exercises. Examination type: Written or oral examination (individual examination) |
Language, Grading |
English,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics. |
Origin | M.Sc. Mathematics |
Duration, frequency |
One semester, Regularly alternating with other specialization modules |
Person in charge of the module's outline | All lecturers of Mathematics |
Contents
Continuation of the contents of an intermediate module, exemplary treatment of current results under inclusion of newer research literature.
The topics come from one of the following areas:
- topology
- analysis
Qualification Goals
The students
- Have gained insight into current research in calculus or topology,
- have practiced dealing with research literature,
- understand the genesis of new mathematical results,
- have deepened their mathematical knowledge in a special area of analysis or topology,
- can independently access current scientific articles from national and international journals,
- have deepened mathematical working methods (developing mathematical intuition and its formal justification, abstraction, proof),
- have improved their oral communication skills in exercises by practicing free speech in front of an audience and in discussion.
Prerequisites
None. The competences taught in the following modules are recommended: either Foundations of Mathematics and Linear Algebra I and Linear Algebra II or Basic Linear Algebra, either Analysis I and Analysis II or Basic Real Analysis. In addition, the competences that are taught in the intermediate modules (depending on the topic) are recommended.
Applicability
The module can be attended at FB12 in study program(s)
- B.Sc. Mathematics
- M.Sc. Computer Science
- M.Sc. Mathematics
- LAaG Mathematics
When studying M.Sc. Mathematics, this module can be attended in the study area Compulsory Elective Modules in Mathematics.
The module can also be used in other study programs (export module).
The module is assigned to Pure Mathematics. Further information on eligibility can be found in the description of the study area.
Recommended Reading
- Depending on topic
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2023/24. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.