Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2016/17 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.
CS 591 — Knowledge Discovery
(engl. Knowledge Discovery)
Niveaustufe, Verpflichtungsgrad | Aufbaumodul, abhängig vom importierenden Studiengang |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben und mündliche Präsentation der Lösung von mindestens zwei der Übungsaufgaben. Prüfungsleistung: Mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang B.Sc. Informatik. |
Exportfach, Ursprung | Informatik, B.Sc. Informatik |
Dauer des Moduls, Häufigkeit |
Ein Semester, Jedes Wintersemester |
Modulverantwortliche(r) | Prof. Dr. Alfred Ultsch |
Inhalt
In Datensammlungen neues, nützliches und für menschliche Experten verständliches Wissen zu entdecken ist häufige Aufgabe in Forschung und Anwendung. Sie erfordert Kenntnisse in Statistik aber auch in Methoden der Künstlichen Intelligenz (Maschinelles Lernen, Expertensysteme, Wissensgewinnung und -verarbeitung). Insbesondere datenbionische, also von der Natur entlehnte Methoden wie z.B. Neuronale Netze, Schwarmsysteme und emergente selbstorganisierende Systeme. Das gewonnene Wissen soll sowohl für Menschen verständlich sein, als auch in Expertensystemen algorithmisch genutzt werden können sein. Die Vorlesung vermittelt die für eine solche Wissensentdeckung aus Datenbanken nötigen Kenntnisse aus den genannten Gebieten.
Qualifikationsziele
Die Studierenden sollen
- wissenschaftliche Vorgehensweisen zur Untersuchung von Datensammlungen mit dem Ziel, neues und bislang unbekanntes Wissen zu entdecken, kennen.
- explorativen statistischen Methoden zur Beschreibung und Analyse der Daten, Methoden der Visualisierung und Projektion von hochdimensionalen, unterschiedliche Verfahren zur Clusterung von Daten und ihre Eigenheiten, Verfahren des Maschinellen Lernens zum Bau von Klassifikatoren, Wissensarten und Expertensysteme kennen und anwenden können
- Kenntnisse zu naturanalogen Methoden der Wissensentdeckung (Neuronale Netze, Schwarmsysteme, Emergente Selbstorganisation) erwerben,
- wissenschaftlicher Arbeitsweisen einüben (Erkennen, Formulieren, Lösen von Problemen, Schulung des Abstraktionsvermögens)
- mündliche Kommunikationsfähigkeit in den Übungen durch Einüben der freien Rede vor einem Publikum trainieren.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen der Informatik vermittelt werden.
Literatur
- D. Hand, H. Mannila, P. Smyth: Principles of Data Mining. MIT Press, 2001; T. Hastie , R. Tibshirani , J. H. Friedman: The Elements of Statistical Learning, Springer, 2001; R. O. Duda, P. E. Hart, D.G. Stork: Pattern Classification, John Wiley, 2001
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2016/17 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24 (kein Äquivalent)
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.