Main content

This entry is from Winter semester 2016/17 and might be obsolete. No current equivalent could be found.

Regularity Theory of Elliptic Partial Differential Equations
(dt. Regularitätstheorie elliptischer partieller Differentialgleichungen)

Level, degree of commitment Specialization module, depends on importing study program
Forms of teaching and learning,
workload
Lecture (3 SWS), recitation class (1 SWS),
180 hours (60 h attendance, 120 h private study)
Credit points,
formal requirements
6 CP
Course requirement(s): Written or oral examination
Examination type: Successful completion of at least 50 percent of the points from the weekly exercises.
Language,
Grading
German,
The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics.
Subject, Origin Mathematics, M.Sc. Mathematics
Duration,
frequency
One semester,
irregular
Person in charge of the module's outline Prof. Dr. Stephan Dahlke

Contents

  • Elliptic partial differential equations
  • variational formulation
  • function spaces
  • Regularity of solutions in Sobolev and Besov spaces

Qualification Goals

Students will

  • Recognize the relevance of regularity theory to practical problems, especially to the numerical treatment of partial differential equations, and acquire knowledge of the basic principles of regularity estimation
  • learn how methods from functional analysis, numerics, and approximation theory work together
  • re-evaluate knowledge from basic and advanced modules
  • recognize the relations of regularity theory to other areas of mathematics and to other sciences
  • practice mathematical working methods (developing mathematical intuition and its formal justification, training the ability to abstract, reasoning)
  • improve their oral communication skills in exercises by practicing free speech in front of an audience and in discussion

Prerequisites

Translation is missing. Here is the German original:

Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Modul Numerik (Numerische Basisverfahren) vermittelt werden.


Recommended Reading

  • Theorie und Numerik elliptischer Differentialgleichungen, W. Hackbusch, Teubner Studienbücher (1996)
  • Elliptic Boundary Value Problems in Domains with Point Singularities, V- Kozlov, V. Maz'ya und J. Rossmann, American Mathematical Society (1997)
  • Elliptic Problems in Nonsmooth Domains, P. Grisvard, Pitman, Boston, (1985)



Please note:

This page describes a module according to the latest valid module guide in Winter semester 2016/17. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:

The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.

The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.