Hauptinhalt
Dieser Eintrag ist aus dem Sommersemester 2018 und möglicherweise veraltet. Ein aktuelles Äquivalent finden Sie hier.
Algebraische Lie-Theorie
(engl. Algebraic Lie Theory)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, Wahlpflichtmodul |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik. |
Dauer des Moduls, Häufigkeit |
Ein Semester, Regelmäßig im Wechsel mit anderen Vertiefungsmodulen in Reiner Mathematik |
Modulverantwortliche(r) | Prof. Dr. István Heckenberger |
Inhalt
Abhängig von der Veranstaltung.
Der Fokus liegt in der intensiven Untersuchung einer speziellen Klasse von algebraischen Strukturen (algebraische Gruppen, Kac-Moody-Algebren, Hopf-Algebren) mit direktem Bezug zur Lie-Theorie. Neben der Strukturtheorie und Klassifikationsresultaten werden auch Querverbindungen zu anderen Theorien aufgezeigt.
Qualifikationsziele
Die Studierenden sollen
- einen Einblick in ein aktuelles Forschungsgebiet bekommen,
- grundlegende Strukturen und Techniken der algebraischen Lie-Theorie kennenlernen,
- abstrakte algebraische Strukturen als Symmetrien begreifen,
- mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- in den Tutorien ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und in dem Aufbaumodul Algebra vermittelt werden.
Verwendbarkeit
Importmodul aus dem M.Sc. Mathematik.
Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen
- B.Sc. Mathematik
- M.Sc. Informatik
- M.Sc. Mathematik
- LAaG Mathematik
Im Studiengang M.Sc. Informatik kann das Modul im Studienbereich Nebenfach Mathematik absolviert werden.
Literatur
- Abhängig von der Veranstaltung
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Sommersemester 2018 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.