Main content
This entry is from Winter semester 2018/19 and might be obsolete. You can find a current equivalent here.
CS 460 — Theoretical Computer Science
(dt. Theoretische Informatik)
Level, degree of commitment | Advanced module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement(s): Written examination Examination type: Successful completion of at least 50 percent of the points from the weekly exercises as well as at least 2 presentations of the tasks. |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program B.Sc. Computer Science. |
Duration, frequency |
One semester, each winter semester |
Person in charge of the module's outline | Prof. Dr. H.-Peter Gumm, Prof. Dr. Rita Loogen |
Contents
- Automata theory and formal languages: grammars and the Chomsky hierarchy, finite automata and regular expressions, context-free grammars and push-down automata, closure properties of formal languages, decidability questions
- Computability: models of computability: Turing, Loop and While-computability, primitive recursion and μ-recursion, Church-Turing thesis; decidability, enumerability, undecidable problems
- Complexity theory: complexity measures; P and NP; reductions and NP-complete problems
Qualification Goals
Basic knowledge in core areas of theoretical computer science, in detail:
- Dealing with regular expressions, finite automata and grammars. Recognizing the possibilities and limitations,
- Understanding formal models of computing,
- Principal limits of algorithmic computing,
- Limits of efficient problem solving,
- Practice of scientific working methods (recognition, formulation, solving problems, training of abstraction skills),
- Training of oral communication skills in the exercises by practicing free speech in front of an audience and during discussion.
Prerequisites
Translation is missing. Here is the German original:
Keine. Empfohlen werden mathematische Grundkenntnisse, wie sie in den Basismodulen Grundlagen der linearen Algebra und Grundlagen der Analysis vermittelt werden.
Applicability
Module imported from B.Sc. Computer Science.
It can be attended at FB12 in study program(s)
- B.Sc. Data Science
- B.Sc. Computer Science
- B.Sc. Mathematics
- B.Sc. Business Informatics
- M.Sc. Data Science
- M.Sc. Mathematics
- M.Sc. Business Informatics
When studying M.Sc. Data Science, this module can be attended in the study area Specialization Modules in Computer Science.
Recommended Reading
- E. Hopcroft, R. Motwani, J.D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Pearson Studium, 2002.
- U. Schöning: Theoretische Informatik – kurzgefasst, Spektrum 2008.
- G. Vossen, K.-U. Witt: Grundkurs der Theoretischen Informatik, Vieweg 2011.
- D.W. Hoffmann: Theoretische Informatik, Hanser Verlag 2009.
- H.P.Gumm, M.Sommer: Einführung in die Informatik, Kapitel 9, Oldenbourg 2009.
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2018/19. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.