Main content
CS 460 — Theoretical Computer Science
(dt. Theoretische Informatik)
Level, degree of commitment | Advanced module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement(s): Successful completion of at least 50 percent of the points from the weekly exercises as well as at least 2 presentations of the tasks. Examination type: Written examination |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program B.Sc. Computer Science. |
Duration, frequency |
One semester, each winter semester |
Person in charge of the module's outline | Prof. Dr. Christian Komusiewicz |
Contents
- Automata theory and formal languages: grammars and the Chomsky hierarchy, finite automata and regular expressions, context-free grammars and push-down automata, closure properties of formal languages, decidability questions
- Computability: models of computability: Turing, Loop and While-computability, primitive recursion and μ-recursion, Church-Turing thesis; decidability, enumerability, undecidable problems
- Complexity theory: complexity measures; P and NP; reductions and NP-complete problems
Qualification Goals
Students
- can deal with regular expressions, finite automata and grammars,
- know their possibilities and limitations,
- understand formal models of computation,
- know basic limits of algorithmic computation,
- know limits of efficient problem solving,
- are able to follow scientific working methods (recognizing, formulating, solving problems, training the ability of abstraction),
- are able to speak freely about scientific content, both in front of an audience and in a discussion.
Prerequisites
None. The competences taught in the following modules are recommended: Basic Linear Algebra, Basic Real Analysis.
Applicability
Module imported from B.Sc. Computer Science.
It can be attended at FB12 in study program(s)
- B.Sc. Data Science
- B.Sc. Computer Science
- M.Sc. Data Science
- M.Sc. Mathematics
- M.Sc. Business Informatics
When studying M.Sc. Data Science, this module can be attended in the study area Free Compulsory Elective Modules.
The module is assigned to Computer Science. Further information on eligibility can be found in the description of the study area.
Recommended Reading
- E. Hopcroft, R. Motwani, J.D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Pearson Studium, 2002.
- U. Schöning: Theoretische Informatik – kurzgefasst, Spektrum 2008.
- G. Vossen, K.-U. Witt: Grundkurs der Theoretischen Informatik, Vieweg 2011.
- D.W. Hoffmann: Theoretische Informatik, Hanser Verlag 2009.
- H.P.Gumm, M.Sommer: Einführung in die Informatik, Kapitel 9, Oldenbourg 2009.
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2023/24. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.