Hauptinhalt

Dieser Eintrag ist aus dem Wintersemester 2018/19 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.

Numerische Behandlung elliptischer partieller Differentialgleichungen
(engl. Numerical Solution Methods for Elliptical Partial Differential Equations)

Niveaustufe, Verpflichtungsgrad Vertiefungsmodul, Wahlpflichtmodul
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (3 SWS), Übung (1 SWS),
180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
6 LP
Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben.
Prüfungsleistung: Klausur oder mündliche Prüfung
Sprache,
Benotung
Deutsch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik.
Dauer des Moduls,
Häufigkeit
Ein Semester,
Regelmäßig im Wechsel mit anderen Spezialisierungsmodulen
Modulverantwortliche(r) Prof. Dr. Stephan Dahlke

Inhalt

Elliptische Differentialgleichungen, schwache Lösungen, Variationsformulierung, Galerkin-Verfahren, finite Elemente


Qualifikationsziele

Die Studierenden sollen

  • die Grenzen der Standardverfahren erkennen, wenn die Problemstellung besondere Anforderungen mit sich bringt,
  • lernen, problemadäquate Lösungen zu finden,
  • beispielhaft nachvollziehen, wie konkrete praktische Entwicklungen die Fragestellungen der angewandten Mathematik beeinflussen,
  • mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
  • in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.

Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Aufbaumodul Numerik vermittelt werden.


Verwendbarkeit

Importmodul aus dem M.Sc. Mathematik.

Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen

  • B.Sc. Mathematik
  • B.Sc. Wirtschaftsmathematik
  • M.Sc. Data Science
  • M.Sc. Informatik
  • M.Sc. Mathematik
  • M.Sc. Wirtschaftsmathematik

Im Studiengang M.Sc. Informatik kann das Modul im Studienbereich Nebenfach Mathematik absolviert werden.


Literatur

  • Hackbusch, W., Theorie und Numerik elliptischer Differentialglei-chungen, Teubner 1986
  • Brenner, S.C., Scott, L.R, The mathematical theory of finite element methods, Springer, 1994



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2018/19 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.