Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2019/20 und möglicherweise veraltet. Ein aktuelles Äquivalent finden Sie hier.
Gesamtangebot Mathematik — Vertiefungsmodul (6 LP)
Liste der Module auf diesem Niveau:
- Adaptive Numerische Verfahren für Operatorgleichungen (Vertiefungsmodul, 6 LP, A)
- Algebraische Topologie (Kleines Vertiefungsmodul) (Vertiefungsmodul, 6 LP, R)
- Algorithmische und Angewandte Algebraische Geometrie (Kleines Vertiefungsmodul) (Vertiefungsmodul, 6 LP, R)
- Compressive Sensing (Vertiefungsmodul, 6 LP, A)
- Computer Aided Geometric Design (Vertiefungsmodul, 6 LP, A)
- Endliche Frames (Vertiefungsmodul, 6 LP, A)
- Extremwerttheorie (Vertiefungsmodul, 6 LP, A)
- Financial Optimization (Vertiefungsmodul, 6 LP)
- Finanzmathematik II (Vertiefungsmodul, 6 LP)
- Hochdimensionale Statistik (Vertiefungsmodul, 6 LP, A)
- Kleines Vertiefungsmodul Algebra/Zahlentheorie/Geometrie (Vertiefungsmodul, 6 LP, R)
- Kleines Vertiefungsmodul Analysis/Topologie (Vertiefungsmodul, 6 LP, R)
- Kleines Vertiefungsmodul Numerik/Optimierung (Vertiefungsmodul, 6 LP, A)
- Kleines Vertiefungsmodul Optimierung (Vertiefungsmodul, 6 LP, A)
- Kleines Vertiefungsmodul Stochastik (Vertiefungsmodul, 6 LP, A)
- Kleines wirtschaftsmathematisches Vertiefungsmodul a (Vertiefungsmodul, 6 LP)
- Kleines wirtschaftsmathematisches Vertiefungsmodul b (Vertiefungsmodul, 6 LP)
- Kombinatorik (kleines Vertiefungsmodul) (Vertiefungsmodul, 6 LP, R)
- Kommutative Algebra (Kleines Vertiefungsmodul) (Vertiefungsmodul, 6 LP, R)
- Konvexe Optimierung in Banachräumen (Vertiefungsmodul, 6 LP, A)
- Nichtglatte Optimierung (Vertiefungsmodul, 6 LP, A)
- Nichtparametrische Statistik (Vertiefungsmodul, 6 LP, A)
- Numerische Behandlung elliptischer partieller Differentialgleichungen (Vertiefungsmodul, 6 LP, A)
- Optimierung bei partiellen Differentialgleichungen (Vertiefungsmodul, 6 LP, A)
- Quantitatives Risikomanagement (Vertiefungsmodul, 6 LP, A)
- Regularitätstheorie elliptischer partieller Differentialgleichungen (Vertiefungsmodul, 6 LP, A)
- Spezialverfahren für Anfangswertprobleme (Vertiefungsmodul, 6 LP, A)
- Stochastische Optimierung (Vertiefungsmodul, 6 LP, A)
- Stochastische Prozesse (Vertiefungsmodul, 6 LP, A)
- Waveletanalysis I (Vertiefungsmodul, 6 LP, A)
- Waveletanalysis II (Vertiefungsmodul, 6 LP, A)
- Zeitreihenanalyse (Vertiefungsmodul, 6 LP, A)
Bitte beachten Sie:
Diese Seite gilt für die im Wintersemester 2019/20 aktuellsten Prüfungsordnungen. Wenn Sie Ihr Studium nach einer früheren oder späteren Prüfungsordnung absolvieren, gelten gegebenenfalls andere Bestimmungen:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.