Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2022/23 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.
Lineare Optimierung
(engl. Linear Optimization)
Niveaustufe, Verpflichtungsgrad | Aufbaumodul, Wahlpflichtmodul |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang B.Sc. Wirtschaftsmathematik. |
Dauer des Moduls, Häufigkeit |
Ein Semester, Jedes Wintersemester |
Modulverantwortliche(r) | Prof. Dr. Thomas Surowiec |
Inhalt
Grundlagen der Konvex-Geometrie und der Dualtitätstheorie, numerische Methoden wie Simplex-Verfahren, duales Simplexverfahren oder auch Innere-Punkt-Methoden. Aussagen zur Komplexität der Verfahren.
Qualifikationsziele
Die Studierenden sollen
- die strukturellen Grundlagen linearer Optimierungsprobleme kennen lernen, um die grundlegende Arbeitsweise der Verfahren zu verstehen,
- die Bedeutung zentraler Begriffe, etwa aus der Dualitätstheorie, für die Diskussion von Optimierungsproblemen erkennen,
- lernen, problemangepasste Verfahren auszuwählen,
- das Basiswissen für aufbauende Module zu allgemeinen Optimierungsproblemen erwerben,
- mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen Lineare Algebra I und Analysis I bzw. Grundlagen der linearen Algebra und Grundlagen der Analysis vermittelt werden.
Verwendbarkeit
Importmodul aus dem B.Sc. Wirtschaftsmathematik.
Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen
- B.Sc. Data Science
- B.Sc. Informatik
- B.Sc. Mathematik
- B.Sc. Wirtschaftsinformatik
- B.Sc. Wirtschaftsmathematik
- M.Sc. Informatik
- M.Sc. Mathematik
- M.Sc. Wirtschaftsmathematik
- LAaG Mathematik
- Bachelor-Nebenfach Mathematik
Im Studiengang M.Sc. Mathematik kann das Modul im Studienbereich Vertiefungsbereich Mathematik absolviert werden.
Das Modul ist der Angewandten Mathematik zugeordnet. Weitere Informationen zur Wählbarkeit sind der Bereichsbeschreibung zu entnehmen.
Literatur
- Nocedal, J., Wright, S.: Numerical Optimization, Springer, 1999;
- Borgwardt, K.K.: Optimierung, Operations Research und Spieltheorie, Birkhäuser, Basel, 2001.
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2022/23 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17 (kein Äquivalent)
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24 (kein Äquivalent)
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.