Hauptinhalt
CS 566 — Effiziente Algorithmen
(engl. Efficient Algorithms)
Niveaustufe, Verpflichtungsgrad | Aufbaumodul, Wahlpflichtmodul |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben und mündliche Präsentation der Lösung von mindestens zwei der Übungsaufgaben. Prüfungsleistung: Mündliche Prüfung (Einzelprüfung) oder Klausur |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang B.Sc. Data Science. |
Dauer des Moduls, Häufigkeit |
Ein Semester, Unregelmäßig |
Modulverantwortliche(r) | Prof. Dr. Bernhard Seeger |
Inhalt
Algorithmische Methoden
- Greedy-Verfahren
- Dynamisches Programmieren
- Divide-and-Conquer
Laufzeitanalysen (worst-case, amortisiert, ausgabesensitiv, Lösung von Rekurrenzen)
Korrektheitsbeweise
Algorithmen für Mengen, Graphen, Text und geometrische Problemstellungen
Algorithmen für Externspeicher
Algorithmen für Datenströme
Approximationsalgorithmen
Qualifikationsziele
Die Studierenden
- sind in der Lage, Fertigkeiten im Entwurf von Algorithmenund Kenntnisse der wichtigsten Entwurfs- und Analyseparadigmen anzuwenden,
- können effiziente Datenstrukturen beim Algorithmenentwurf nutzen,
- sind in der Lage, Algorithmen bzgl. Korrektheit und Aufwand zu analysieren,
- haben wissenschaftliche Arbeitsweisen eingeübt (Erkennen, Formulieren, Lösen von Problemen, Abstraktion),
- haben trainiert, über wissenschaftliche Inhalte frei zu sprechen, sowohl vor einem Publikum als auch in einer Diskussion.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in dem Modul Algorithmen und Datenstrukturen vermittelt werden.
Verwendbarkeit
Importmodul aus dem B.Sc. Data Science.
Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen
- B.Sc. Data Science
- B.Sc. Informatik
- B.Sc. Mathematik
- M.Sc. Data Science
- M.Sc. Informatik
- M.Sc. Mathematik
- M.Sc. Wirtschaftsinformatik
- M.Sc. Wirtschaftsmathematik
- LAaG Informatik
Im Studiengang M.Sc. Data Science kann das Modul im Studienbereich Freie Wahlpflichtmodule absolviert werden.
Das Modul ist der Informatik zugeordnet. Weitere Informationen zur Wählbarkeit sind der Bereichsbeschreibung zu entnehmen.
Literatur
- Cormen, Leierson, Rivest, Stein: Algorithmen - Eine Einführung. Oldenbourg.
- Ottmann, Widmayer: Algorithmen und Datenstrukturen. Spektrum Akad. Verlag.
- Schöning: Algorithmik. Spektrum Akad. Verlag. 2001.
- Güting, Dieker: Datenstrukturen und Algorithmen, Vieweg+Teubner
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.