Main content
Elementary Algebraic Geometry
(dt. Elementare Algebraische Geometrie)
Level, degree of commitment | Advanced module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement(s): Successful completion of at least 50 percent of the points from the weekly exercises. Examination type: Written or oral examination (individual examination) |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program B.Sc. Mathematics. |
Duration, frequency |
One semester, Regularly alternating with the other advanced modules |
Person in charge of the module's outline | Prof. Dr. Thomas Bauer |
Contents
Geometry in affine, euclidean and projective spaces; comparison of the underlying transformations and invariants, as well as the respective ways of working.
Geometry of plane algebraic curves: curves and their equations, Bézout's theorem, singularities, linear systems.
Qualification Goals
Students
- Have become familiar with different ways of working in geometry,
- understand the interaction of geometric and algebraic-analytic methods,
- have practiced mathematical ways of working (developing mathematical intuition and its formal justification, training the ability to abstract, reasoning),
- have improved their oral communication skills in exercises by practicing free speech in front of an audience and in discussion.
Prerequisites
None. The competences taught in the following modules are recommended: either Foundations of Mathematics and Linear Algebra I and Linear Algebra II or Basic Linear Algebra, either Analysis I and Analysis II or Basic Real Analysis.
Applicability
Module imported from B.Sc. Mathematics.
It can be attended at FB12 in study program(s)
- B.Sc. Mathematics
- M.Sc. Computer Science
- M.Sc. Mathematics
- LAaG Mathematics
- BA Minor Mathematics
When studying M.Sc. Mathematics, this module can be attended in the study area Compulsory Elective Modules in Mathematics.
The module is assigned to Pure Mathematics. Further information on eligibility can be found in the description of the study area.
Recommended Reading
- Coxeter: Introduction to Geometry, John Wiley & Sons
- Fischer, G.: Ebene algebraische Kurven, Vieweg
- Koecher, Krieg: Ebene Geometrie, Springer
- Agricola, Friedrich: Elementargeometrie, Vieweg
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2023/24. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.