Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2016/17 und möglicherweise veraltet. Ein aktuelles Äquivalent finden Sie hier.
Großes Vertiefungsmodul Analysis/Topologie
(engl. Specialization Module Analysis/Topology (9 ECTS))
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, Wahlpflichtmodul |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik. |
Dauer des Moduls, Häufigkeit |
Ein Semester, Regelmäßig im Wechsel mit anderen Vertiefungsmodulen |
Modulverantwortliche(r) | Alle Dozentinnen und Dozenten der Mathematik |
Inhalt
Weiterführung der Inhalte eines Aufbaumoduls, exemplarische Behandlung aktueller Ergebnisse unter Einbeziehung neuerer Forschungsliteratur.
Die Themen entstammen einem der folgenden Gebiete:
- Topologie
- Analysis
Qualifikationsziele
Die Studierenden sollen
- an aktuelle Forschungsergebnisse herangeführt werden
- den Umgang mit Forschungsliteratur trainieren;
- Einblick in die Entstehung neuer mathematischer Resultate erhalten,
- mathematische Kenntnisse in einem speziellen Gebiet vertiefen.
- Kompetenz zur eigenständigen Erschließung aktueller wissenschaftlicher Beiträge aus nationalen und internationalen Fachzeitschriften erwerben.
- mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung)
- in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen vermittelt werden, ferner auch themenabhängig Kenntnisse aus Aufbaumodulen
Verwendbarkeit
Importmodul aus dem M.Sc. Mathematik.
Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen
- B.Sc. Mathematik
- M.Sc. Informatik
- M.Sc. Mathematik
Im Studiengang M.Sc. Informatik kann das Modul im Studienbereich Nebenfach Mathematik absolviert werden.
Literatur
- Themenabhängig
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2016/17 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.