Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2016/17 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.
Nichtlineare Optimierung
(engl. Nonlinear Optimization)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, Wahlpflichtmodul |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Wirtschaftsmathematik. |
Dauer des Moduls, Häufigkeit |
Ein Semester, Regelmäßig im Wechsel mit anderen Lehrveranstaltungen im Forschungsgebiet Optimierung |
Modulverantwortliche(r) | N.N. |
Inhalt
Grundlagen der nichtlinearen Optimierung: Kuhn-Tucker-Theorie, Minimierung nichtlinearer Funktionen; Minimierung nichtlinearer Funktionen mit Nebenbedingungen
Qualifikationsziele
Die Studierenden sollen
- fundierte Kenntnisse der Theorie und Praxis grundlegender Methoden der Optimierung erwerben
- die Relevanz von Optimierungsverfahren für praktische Probleme aus verschiedenen Anwendungsgebieten wie Parameteroptimierung, nichtlineare Regression, Approximation oder optimale Steuerung erkennen und einschätzen lernen
- Fähigkeit zur Modellierung und Lösung von Optimierungsproblemen bei praktischen Problemstellungen erwerben.
- mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung)
- in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen Analysis und Lineare Algebra vermittelt werden
Verwendbarkeit
Importmodul aus dem M.Sc. Wirtschaftsmathematik.
Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen
- B.Sc. Mathematik
- B.Sc. Wirtschaftsmathematik
- M.Sc. Data Science
- M.Sc. Informatik
- M.Sc. Mathematik
- M.Sc. Wirtschaftsmathematik
- LAaG Mathematik
Im Studiengang M.Sc. Informatik kann das Modul im Studienbereich Nebenfach Mathematik absolviert werden.
Literatur
- Alt, W.: Nichtlineare Optimierung, Vieweg, 2002
- Jarre, F., Stoer, J.: Nonlinear Programming, Springer, 2004
- Fletcher, R.: Practical Methods of Optimization, 2nd Edition, John Wiley & Sons, 1987
- Nocedal, J., Wright, S.: Numerical Optimization, Springer, 2002
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2016/17 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24 (kein Äquivalent)
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.