Hauptinhalt
Approximationstheorie
(engl. Approximation Theory)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, abhängig vom importierenden Studiengang |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung (Einzelprüfung) |
Sprache, Benotung |
Englisch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik. |
Exportfach, Ursprung | Mathematik, M.Sc. Mathematik |
Dauer des Moduls, Häufigkeit |
Ein Semester, Regelmäßig im Wechsel mit anderen Vertiefungsmodulen in angewandter Mathematik |
Modulverantwortliche(r) | Prof. Dr. Christian Rieger |
Inhalt
Funktionenräume, beste Approximation, Approximation mit Polynomen, Splines und trigonometrischen Funktionen, Glattheitsmodule und K-Funktional
Qualifikationsziele
Die Studierenden
- erkennen und schätzen die Relevanz der Approximationstheorie für praktische Probleme, etwa aus der Numerik, korrekt ein, und besitzen das approximationstheoretische Rüstzeug zum Lösen dieser Probleme,
- verstehen, wie Methoden der Linearen Algebra, Analysis und Numerik zusammenwirken,
- bewerten Kenntnisse aus den Basismodulen und einigen Aufbaumodulen neu,
- erkennen die Beziehungen der Approximationstheorie zu anderen Bereichen der Mathematik und zu anderen Wissenschaften,
- haben mathematische Arbeitsweisen (Entwickeln von mathematischer Intuition und deren formaler Begründung, Abstraktion, Beweisführung) vertieft,
- haben in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessert.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen vermittelt werden.
Literatur
- DeVore, R., Lorenz, G.G., Constructive Approximation, Springer, New York, 1993
- Powell, M.J.D., Approximation Theory and Methods, Cambridge Univer-sity Press, 1981
- Cheney, W., Light, W., A Course on Approximation Theory, Brooks/-Cole Publishing Company, 1999
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.