Hauptinhalt
Großes Vertiefungsmodul Numerik/Optimierung
(engl. Large Specialization Module Numerical Mathematics/Optimization)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, abhängig vom importierenden Studiengang |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung (Einzelprüfung) |
Sprache, Benotung |
Englisch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik. |
Exportfach, Ursprung | Mathematik, M.Sc. Mathematik |
Dauer des Moduls, Häufigkeit |
Ein Semester, Unregelmäßig |
Modulverantwortliche(r) | Alle Dozentinnen und Dozenten der Mathematik |
Inhalt
Weiterführung der Inhalte eines Aufbaumoduls, exemplarische Behandlung aktueller Ergebnisse unter Einbeziehung neuerer Forschungsliteratur.
Die Themen entstammen einem der folgenden Gebiete:
- Numerik
- Optimierung
Qualifikationsziele
Die Studierenden
- haben Einblicke in aktuelle Forschungsergebnisse der Numerik oder Optimierung erhalten,
- haben den Umgang mit Forschungsliteratur trainiert,
- verstehen die Genese neuer mathematischer Resultate,
- haben ihre mathematischen Kenntnisse in einem speziellen Gebiet der Numerik oder Optimierung vertieft,
- können aktuelle wissenschaftliche Beiträge aus nationalen und internationalen Fachzeitschriften eigenständig erschließen,
- haben mathematische Arbeitsweisen (Entwickeln von mathematischer Intuition und deren formaler Begründung, Abstraktion, Beweisführung) vertieft,
- haben in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessert.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den mathematischen Basismodulen und in Aufbaumodulen (themenabhängig) vermittelt werden.
Literatur
- Themenabhängig
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.