Main content

Approximation Theory
(dt. Approximationstheorie)

Level, degree of commitment Specialization module, compulsory elective module
Forms of teaching and learning,
Lecture (4 SWS), recitation class (2 SWS),
270 hours (90 h attendance, 180 h private study)
Credit points,
formal requirements
9 CP
Course requirement(s): Successful completion of at least 50 percent of the points from the weekly exercises.
Examination type: Written or oral examination (individual examination)
The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics.
One semester,
Regularly alternating with other specialization modules in angewandter Mathematics
Person in charge of the module's outline Prof. Dr. Christian Rieger


function spaces, best approximation, approximation with polynomials, splines and trigonometric functions, smoothness modules and K-functions

Qualification Goals

Students will

  • correctly recognize and appreciate the relevance of approximation theory to practical problems, such as those in numerics, and possess the approximation-theoretic tools to solve these problems,
  • understand how methods of linear algebra, analysis and numerics interact,
  • re-evaluate knowledge from the basic modules and some advanced modules,
  • recognize the relationships of approximation theory to other areas of mathematics and to other sciences,
  • have deepened mathematical working methods (developing mathematical intuition and its formal justification, abstraction, proof),
  • have improved their oral communication skills in exercises by practicing free speech in front of an audience and in discussion.


None. The competences taught in the following modules are recommended: either Foundations of Mathematics and Linear Algebra I and Linear Algebra II or Basic Linear Algebra, either Analysis I and Analysis II or Basic Real Analysis.


Module imported from M.Sc. Mathematics.

It can be attended at FB12 in study program(s)

  • B.Sc. Mathematics
  • B.Sc. Business Mathematics
  • M.Sc. Data Science
  • M.Sc. Computer Science
  • M.Sc. Mathematics
  • M.Sc. Business Mathematics
  • LAaG Mathematics

When studying M.Sc. Computer Science, this module can be attended in the study area Profile Area Mathematics.

Recommended Reading

  • DeVore, R., Lorenz, G.G., Constructive Approximation, Springer, New York, 1993
  • Powell, M.J.D., Approximation Theory and Methods, Cambridge Univer-sity Press, 1981
  • Cheney, W., Light, W., A Course on Approximation Theory, Brooks/-Cole Publishing Company, 1999

Please note:

This page describes a module according to the latest valid module guide in Winter semester 2023/24. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:

The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.

The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.