Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2020/21 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.
M.Sc. Mathematik — Vertiefungsbereich Mathematik
In diesem Studienbereich sind Module im Umfang von insgesamt 51 LP auszuwählen. Dabei sind mindestens 18 LP in Modulen zur Reinen Mathematik (mit einem „R“ gekennzeichnet) und mindestens 12 LP in Modulen zur Angewandten Mathematik („A“) zu erwerben. Außerdem dürfen höchstens zwei Aufbau- oder wirtschaftsmathematische Anwendungsmodule absolviert werden. Die wirtschaftsmathematischen Anwendungsmodule („A*“) zählen zur Angewandten Mathematik.
Liste der Module in diesem Studienbereich:
Sortierung: alphabetisch, nach Merkmal, nach Niveau und LP
Aufbaumodul, 6 LP
- Diskrete Geometrie (Aufbaumodul, 6 LP, R)
- Elementare Topologie (Aufbaumodul, 6 LP, R)
- Finanzmathematik I (Aufbaumodul, 6 LP, A*)
- Kleines Aufbaumodul Algebra/Zahlentheorie/Geometrie (Aufbaumodul, 6 LP, R)
- Kleines Aufbaumodul Analysis/Topologie (Aufbaumodul, 6 LP, R)
- Kleines Aufbaumodul Numerik/Optimierung (Aufbaumodul, 6 LP, A)
- Kleines Aufbaumodul Stochastik (Aufbaumodul, 6 LP, A)
- Statistik (Aufbaumodul, 6 LP, A)
Aufbaumodul, 9 LP
- Darstellungstheorie (Aufbaumodul, 9 LP, R)
- Diskrete Mathematik (Aufbaumodul, 9 LP, R)
- Elementare Algebraische Geometrie (Aufbaumodul, 9 LP, R)
- Elementare Stochastik (Aufbaumodul, 9 LP, A)
- Großes Aufbaumodul Algebra/Zahlentheorie/Geometrie (Aufbaumodul, 9 LP, R)
- Großes Aufbaumodul Analysis/Topologie (Aufbaumodul, 9 LP, R)
- Großes Aufbaumodul Numerik/Optimierung (Aufbaumodul, 9 LP, A)
- Großes Aufbaumodul Stochastik (Aufbaumodul, 9 LP, A)
- Lie-Gruppen und Lie-Algebren (Aufbaumodul, 9 LP, R)
- Lineare Optimierung (Aufbaumodul, 9 LP, A)
- Mathematische Datenanalyse (Aufbaumodul, 9 LP, A)
- Topologie (Aufbaumodul, 9 LP, R)
Vertiefungsmodul, 3 LP
- Aktuarwissenschaften: Risikotheorie (Vertiefungsmodul, 3 LP, A*)
- Aktuarwissenschaften: Schadenversicherungsmathematik (Vertiefungsmodul, 3 LP, A*)
- Asymptotische Statistik (Vertiefungsmodul, 3 LP, A)
- Ausgewählte Themen der Finanzmathematik (Vertiefungsmodul, 3 LP, A*)
- Kleines Vertiefungsmodul Stochastik ohne Tutorium (Vertiefungsmodul, 3 LP, A)
- Personenversicherungsmathematik: Krankenversicherung (Vertiefungsmodul, 3 LP, A*)
- Personenversicherungsmathematik: Lebensversicherung (Vertiefungsmodul, 3 LP, A*)
Vertiefungsmodul, 6 LP
- Adaptive Numerische Verfahren für Operatorgleichungen (Vertiefungsmodul, 6 LP, A)
- Algebraische Topologie (Kleines Vertiefungsmodul) (Vertiefungsmodul, 6 LP, R)
- Algorithmische und Angewandte Algebraische Geometrie (Kleines Vertiefungsmodul) (Vertiefungsmodul, 6 LP, R)
- Compressive Sensing (Vertiefungsmodul, 6 LP, A)
- Computer Aided Geometric Design (Vertiefungsmodul, 6 LP, A)
- Endliche Frames (Vertiefungsmodul, 6 LP, A)
- Extremwerttheorie (Vertiefungsmodul, 6 LP, A)
- Financial Optimization (Vertiefungsmodul, 6 LP, A*)
- Finanzmathematik II (Vertiefungsmodul, 6 LP, A*)
- Hochdimensionale Statistik (Vertiefungsmodul, 6 LP, A)
- Kleines Vertiefungsmodul Algebra/Zahlentheorie/Geometrie (Vertiefungsmodul, 6 LP, R)
- Kleines Vertiefungsmodul Analysis/Topologie (Vertiefungsmodul, 6 LP, R)
- Kleines Vertiefungsmodul Numerik/Optimierung (Vertiefungsmodul, 6 LP, A)
- Kleines Vertiefungsmodul Optimierung (Vertiefungsmodul, 6 LP, A)
- Kleines Vertiefungsmodul Stochastik (Vertiefungsmodul, 6 LP, A)
- Kombinatorik (kleines Vertiefungsmodul) (Vertiefungsmodul, 6 LP, R)
- Kommutative Algebra (Kleines Vertiefungsmodul) (Vertiefungsmodul, 6 LP, R)
- Konvexe Optimierung in Banachräumen (Vertiefungsmodul, 6 LP, A)
- Nichtglatte Optimierung (Vertiefungsmodul, 6 LP, A)
- Nichtparametrische Statistik (Vertiefungsmodul, 6 LP, A)
- Numerische Behandlung elliptischer partieller Differentialgleichungen (Vertiefungsmodul, 6 LP, A)
- Optimierung bei partiellen Differentialgleichungen (Vertiefungsmodul, 6 LP, A)
- Quantitatives Risikomanagement (Vertiefungsmodul, 6 LP, A)
- Regularitätstheorie elliptischer partieller Differentialgleichungen (Vertiefungsmodul, 6 LP, A)
- Spezialverfahren für Anfangswertprobleme (Vertiefungsmodul, 6 LP, A)
- Stochastische Optimierung (Vertiefungsmodul, 6 LP, A)
- Stochastische Prozesse (Vertiefungsmodul, 6 LP, A)
- Waveletanalysis I (Vertiefungsmodul, 6 LP, A)
- Waveletanalysis II (Vertiefungsmodul, 6 LP, A)
- Zeitreihenanalyse (Vertiefungsmodul, 6 LP, A)
Vertiefungsmodul, 9 LP
- Algebraische Geometrie: Projektive Varietäten (Vertiefungsmodul, 9 LP, R)
- Algebraische Geometrie: Weiterführende Methoden (Vertiefungsmodul, 9 LP, R)
- Algebraische Gleichungen und Varietäten (Vertiefungsmodul, 9 LP, R)
- Algebraische Lie-Theorie (Vertiefungsmodul, 9 LP, R)
- Algebraische Topologie (Vertiefungsmodul, 9 LP, R)
- Analytische Zahlentheorie (Vertiefungsmodul, 9 LP, R)
- Angewandte Funktionalanalysis (Vertiefungsmodul, 9 LP, A)
- Approximationstheorie (Vertiefungsmodul, 9 LP, A)
- Differentialgeometrie I (Vertiefungsmodul, 9 LP, R)
- Differentialgeometrie II (Vertiefungsmodul, 9 LP, R)
- Einführung in die komplexe Geometrie (Vertiefungsmodul, 9 LP, R)
- Fourier-Integraloperatoren (Vertiefungsmodul, 9 LP, R)
- Funktionalanalysis (Vertiefungsmodul, 9 LP, R)
- Galoistheorie (Vertiefungsmodul, 9 LP, R)
- Großes Vertiefungsmodul Algebra/Zahlentheorie/Geometrie (Vertiefungsmodul, 9 LP, R)
- Großes Vertiefungsmodul Analysis/Topologie (Vertiefungsmodul, 9 LP, R)
- Großes Vertiefungsmodul Numerik/Optimierung (Vertiefungsmodul, 9 LP, A)
- Großes Vertiefungsmodul Optimierung (Vertiefungsmodul, 9 LP, A)
- Großes Vertiefungsmodul Stochastik (Vertiefungsmodul, 9 LP, A)
- Holomorphe Funktionen und Abelsche Varietäten (Vertiefungsmodul, 9 LP, R)
- Kombinatorik (Großes Vertiefungsmodul) (Vertiefungsmodul, 9 LP, R)
- Kommutative Algebra (Großes Vertiefungsmodul) (Vertiefungsmodul, 9 LP, R)
- Mathematische Statistik (Vertiefungsmodul, 9 LP, A)
- Nichtkommutative Algebra (Vertiefungsmodul, 9 LP, R)
- Nichtlineare Optimierung (Vertiefungsmodul, 9 LP, A)
- Numerik endlichdimensionaler Probleme (Vertiefungsmodul, 9 LP, A)
- Numerik von Differentialgleichungen (Vertiefungsmodul, 9 LP, A)
- Partielle Differentialgleichungen (Vertiefungsmodul, 9 LP, R)
- Probabilistische Kombinatorik (Vertiefungsmodul, 9 LP, A)
- Spektral- und Streutheorie (Vertiefungsmodul, 9 LP, R)
- Stochastische Analysis (Vertiefungsmodul, 9 LP, A)
- Wahrscheinlichkeitstheorie (Vertiefungsmodul, 9 LP, A)
Bitte beachten Sie:
Diese Seite gilt für die im Wintersemester 2020/21 aktuellsten Prüfungsordnungen. Wenn Sie Ihr Studium nach einer früheren oder späteren Prüfungsordnung absolvieren, gelten gegebenenfalls andere Bestimmungen:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24 (kein Äquivalent)
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.