Hauptinhalt
Funktionentheorie und Vektoranalysis
(engl. Complex Analysis and Vector Analysis)
Niveaustufe, Verpflichtungsgrad | Aufbaumodul, abhängig vom importierenden Studiengang |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung (Einzelprüfung) |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang B.Sc. Mathematik. |
Exportfach, Ursprung | Mathematik, B.Sc. Mathematik |
Dauer des Moduls, Häufigkeit |
Ein Semester, Jedes Sommersemester |
Modulverantwortliche(r) | Prof. Dr. Ilka Agricola, Prof. Dr. Thomas Bauer, Prof. Dr. Oliver Goertsches, Prof. Dr. Pablo Ramacher |
Inhalt
- Komplexe Differenzierbarkeit, Cauchy-Riemann-Differentialgleichungen,
- Grundlagen der Kurventheorie (Kurvenlänge, Krümmung, Windungszahl) und Kurvenintegrale
- Cauchy-Integralsätze und Folgerungen
- Isolierte Singularitäten, elementare holomorphe Funktionen, meromorphe Funktionen, Laurentreihen, Residuensatz mit Anwendungen,
- Untermannigfaltigkeiten des R^n (dieser Themenkomplex kann vom Dozenten alternativ in der Analysis II behandelt werden)
- klassische Vektoranalysis (Gradient, Divergenz, Rotation), Differentialformen,
- Integration auf Untermannigfaltigkeiten, klassische Integralsätze (Stokes, Gauß, Ostrogradski …), Anwendungen
Qualifikationsziele
Die Studierenden sind in der Lage,
- komplex-analytische Methoden zur Lösung von Problemen der reellen Analysis zu verwenden,
- mit komplex-differenzierbaren Funktionen umzugehen, die in der komplexen und algebraischen Geometrie verwendet werden,
- Integralsätze als Werkzeug zur Beschreibung verschiedener Phänomene der mathematischen Physik (Feldtheorie, Strömungsmechanik u.a.) anzuwenden,
- Kenntnisse aus dem Basismodul Analysis zu reflektieren und in Verbindung zur Algebra, Geometrie und Topologie zu betrachten,
- nach mathematischen Arbeitsweisen vorzugehen (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens),
- können über wissenschaftliche Inhalte frei sprechen, sowohl vor einem Publikum als auch in einer Diskussion.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den mathematischen Basismodulen vermittelt werden.
Literatur
- Fischer, W., Lieb, I.: Funktionentheorie: Komplexe Analysis in einer Veränderlichen, Vieweg.
- Remmert, R., Schumacher, G.: Funktionentheorie I,II, Berlin: Springer.
- Klaus Jänich: Funktionentheorie, Springer-Verlag.
- Ilka Agricola, Thomas Friedrich: Vektoranalysis, Vieweg-Verlag 2010.
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.