Hauptinhalt

Fourier-Integraloperatoren
(engl. Fourier Integral Operators)

Niveaustufe, Verpflichtungsgrad Vertiefungsmodul, abhängig vom importierenden Studiengang
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (4 SWS), Übung (2 SWS),
270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
9 LP
Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben.
Prüfungsleistung: Klausur oder mündliche Prüfung (Einzelprüfung)
Sprache,
Benotung
Englisch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik.
Exportfach, Ursprung Mathematik, M.Sc. Mathematik
Dauer des Moduls,
Häufigkeit
Ein Semester,
Regelmäßig im Wechsel mit anderen Vertiefungsmodulen im Gebiet Analysis
Modulverantwortliche(r) Prof. Dr. Pablo Ramacher

Inhalt

  • Oszillierende Integrale
  • Fourier-Integraloperatoren und Pseudodifferentialoperatoren im euklidischen Raum
  • Pseudodifferentialoperatoren auf Mannigfaltigkeiten und deren Spektraltheorie, Sobolev-Räume
  • Hamilton-Jacobi-Theorie, Symplektische Geometrie, Lagrange'sche Untermannigfaltigkeiten
  • Globale Theorie der Fourier-Integraloperatoren auf Mannigfaltigkeiten

Qualifikationsziele

Die Studierenden

  • kennen die Theorie der Fourier-Integraloperatoren als zentrales Gebiet der Analysis und können diese verwenden,
  • sind an Fragen der aktuellen Forschung herangeführt worden,
  • können Kenntnisse aus der Funktionalanalysis, Fourier- und Distributionentheorie auf die moderne Theorie partieller Differentialgleichungen anwenden,
  • haben mathematische Arbeitsweisen (Entwickeln von mathematischer Intuition und deren formaler Begründung, Abstraktion, Beweisführung) vertieft,
  • haben in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessert.

Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in den Basis- und Aufbaumodulen Analysis, sowie in den Vertiefungsmodulen Funktionalanalysis und Partielle Differentialgleichungen vermittelt werden.


Literatur

  • Shubin, M. A., Pseudodifferential operators and spectral theory; Grigis, A. and Sjoestrand, J., Microlocal analysis for differential operators; Duistermaat, J.J., Fourier integral operators.



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2023/24 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.