![[Logo]](icons/PhUniMa_Logo_sw.png) |
Prof.Dr.habil. Ilka Agricola |
 |
Articles
N.B. Clicking on highlighted
title brings you directly to a view-only version of the paper on the journal homepage, a new feature offered for Springer journals ("SharedIt") or to the article homepage when it's published `open access'.
Curvature Properties of 3-(a,d)-Sasaki manifolds
Ilka Agricola, Giulia Dileo, and Leander Stecker
arXiv:2206.05150[math.DG], to appear in Annali di Matematica Pura ed Applicata
Invariant Spinors on Homogeneous Spheres
Ilka Agricola, Jordan Hofmann, and Marie-Amélie Lawn
arXiv:2203.02961[math.DG], to appear in Differential Geometry and its Applications
Homogeneous non-degenerate 3-(a,d)-Sasaki manifolds and submersions over quaternionic
Kähler spaces
Ilka Agricola, Giulia Dileo, and Leander Stecker
[pdf-file]
arXiv:2011.13434 [math.DG],
Ann. Glob. Anal. Geom. 60 (2021), 111-141 (open access).
In memoriam Thomas Friedrich (1949-2018)
Ilka Agricola, Verena Bögelein, Frank Duzaar
[link to pdf-file]
Annals of Global Analysis and Geometry 56 (2019), 613-630 (open access).
Generalizations of 3-Sasakian manifolds and skew torsion
Ilka Agricola and Giulia Dileo [pdf-file]
arXiv:1804.06700 [math.DG],
Adv. Geom. 20 (2020), 331-374.
The archive version has "normal" layout, the pdf file here is more spacious,
giving it more of a "book" flavour.
On the history of the Hopf problem
Ilka Agricola, Giovanni Bazzoni, Oliver Goertsches, Panagiotis Konstantis,
Sönke Rollenske [pdf-file]
arXiv:1708.01068[math.HO], Diff. Geom. Appl.
57 (2018), 1-9.
S6 and the geometry of nearly Kähler 6-manifolds
Ilka Agricola, Aleksandra Borówka, Thomas Friedrich [pdf-file]
arXiv:1707.08591[math.DG],
Diff. Geom. Appl. 57 (2018), 75-86.
Horst F. Niemeyer und das Proportionalverfahren
Ilka Agricola und Friedrich Pukelsheim
Math. Semesterber. 64 (2017), 129-146.
Tangent Lie groups are Riemannian naturally reductive spaces
Ilka Agricola, Ana Cristina Ferreira [pdf-file]
arXiv:/1603.06211 [math.DG], Adv. Appl. Clifford Algebras
(2017), 895-911.
Manifolds with vectorial torsion
Ilka Agricola, Margarita Kraus [pdf-file]
arXiv:/1509.08944 [math.DG], Diff. Geom. Appl. 45 (2016), 130-147.
Quaternionic Heisenberg groups as naturally reductive homogeneous spaces
Ilka Agricola, Ana Cristina Ferreira, Reinier Storm [pdf-file]
arXiv:/1503.08350 [math.DG],
Int. J. Geom. Methods Mod. Phys. 12 (2015), article ID 1560007.
Spinorial description of SU(3)- and G_2-manifolds
Ilka Agricola, Simon G. Chiossi, Thomas Friedrich, Jos Höll
[pdf-file]
arXiv:/1411.5663 [math.DG],
J. Geom. Phys. 98 (2015), 535-555.
The classification of naturally reductive homogeneous spaces in
dimensions n <=6
Ilka Agricola, Ana Cristina Ferreira, Thomas Friedrich
[pdf-file]
arXiv:/1407.4936[math.DG],
Diff. Geom. Appl. 39 (2015), 59-92.
A note on generalized Dirac eigenvalues for split holonomy and
torsion
Ilka Agricola, Hwajeong Kim
[pdf-file]
arXiv:1311.0887[math.DG],
B. Korean Math. Soc. 51 (2014), 1579-1589.
Cones of G-manifolds and Killing spinors
with skew torsion
Ilka Agricola, Jos Höll
[pdf-file]
arXiv:1303.3601 [math.DG], accepted
12/2013, printed in Ann. Mat. Pura Appl. 194 (2015), 673-718.
Einstein manifolds with skew torsion
Ilka Agricola, Ana Cristina Ferreira
[pdf-file]
arXiv:1209.5886 [math.DG],
Quart. J. Math. 65 (2014), 717-741.
Sp(3) structures on 14-dimensional manifolds
Ilka Agricola, Thomas Friedrich, Jos Höll
[pdf-file]
arXiv:1210.3056 [math.DG],
J. Geom. Phys. 69 (2013), 12-30.
Twistorial eigenvalue estimates for generalized Dirac operators with torsion
Ilka Agricola, Julia Becker-Bender, Hwajeong Kim
[pdf-file]
arXiv:1208.2031 [math.DG],
Adv. Math. 243 (2013), 296-329.
On the topology and the geometry
of SO(3)-manifolds
Ilka Agricola, Julia Becker-Bender, Thomas Friedrich
[pdf-file]
arXiv:1010.0260v1 [math.DG], Ann. Global Anal. Geom. 40 (2011), 67-84.
A note on flat metric connections with antisymmetric torsion
Ilka Agricola, Thomas Friedrich
[pdf-file]
arXiv:0911.1602v1 [math.DG], Diff. Geom. Appl. 28 (2010), 480-487.
3-Sasakian manifolds in dimension seven, their spinors and G_2
structures
Ilka Agricola, Thomas Friedrich [abstract]
[pdf-file]
arXiv:0812.1651v1 [math.DG], J. Geom. Phys. 60 (2010), 326-332.
Old and New on the exceptional Lie group G_2
Ilka Agricola [pdf-file]
Notices of the AMS 55 (2008), 922-929; September 2008.
Chinese translation: Mathematical Advance in Translation 2 (2010),
127-134 [pdf-file]
See also the pictures of our
mathematical excursion to Niesky.
Eigenvalue estimates for Dirac operators with parallel
characteristic torsion
I. Agricola, Th. Friedrich, and M. Kassuba [abstract] [pdf-file]
Diff. Geom. Appl. 26 (2008), 613-624.
Zur Geschichte der Ausnahme-Lie-Gruppe $G_2$
Ilka Agricola [pdf-file]
Mitteilungen der DMV 15 (2007), 242-248.
Solvmanifolds with integrable and non-integrable G_2
structures
I. Agricola, S. G. Chiossi and A. Fino [pdf-file]
math.DG/0510300, Diff. Geom. Appl. 25 (2006), 125-135.
Geometric structures of vectorial type
I. Agricola and Th. Friedrich [pdf-file]
math.DG/0509147, J. Geom. Phys. 56 (2006), 2403-2414.
On the Ricci tensor in the common sector of type II
string theory
I. Agricola, T. Friedrich, P.-A. Nagy, C. Puhle
[Abstract]
[pdf-file]
hep-th/0412127, Class. Quant. Grav. 22 (2005) 2569-2577.
The geodesics of metric connections with
vectorial torsion
Ilka Agricola and Christian Thier
[Abstract]
[pdf-file]
math.DG/0309087, Ann. Global Anal. Geom. 26 (2004), 321-332.
Killing spinors in Supergravity with 4-fluxes
Ilka Agricola and Thomas Friedrich
[Abstract]
[pdf-file]
math.DG/0307360, Class. Quant. Grav. 20 (2003), 4707-4717.
The Casimir operator of a metric connection with skew-symmetric
torsion
Ilka Agricola and Thomas Friedrich
[Abstract]
[pdf-file]
math.DG/0305233, Journ. Geom. Phys. 50 (2004), 188-204.
On the holonomy of connections with skew-symmetric
torsion
Ilka Agricola and Thomas Friedrich
[Abstract]
[pdf-file]
math.DG/0305069, Math. Ann. 328 (2004), 711-748.
The algebra of K-invariant vector fields on a symmetric space G/K
Ilka Agricola and
Roe Goodman
[Abstract]
[pdf-file]
math.RT/0207161, Michigan Journ. Math. 51 (2003), 607-630.
Connections on naturally reductive spaces,
their Dirac operator and homogeneous models in string theory
Ilka Agricola
[Abstract]
[pdf-file]
math.DG/0202094, Comm. Math. Phys. 232 (2003) 3, 535-563.
Connexions sur les espaces homogènes naturellement
réductifs et leurs opérateurs de Dirac
Ilka Agricola
[pdf-file]
C. R. Acad. Sci. Paris, Ser. I 335 (2002), 43-46.
Invariante Differentialoperatoren und die Frobenius-Zerlegung einer G-Varietät
Ilka Agricola [pdf-file]
J. Lie Theory 11, 81-109 (2001)
A comparison of the eigenvalues of the Dirac and Laplace operator on the two-dimensional torus
Ilka Agricola, Bernd Ammann, and Thomas Friedrich
[Abstract]
[pdf-file]
math.DG/9812044, manuscripta math. 100 (1999) 2, 231-258.
Upper bounds for the first eigenvalue of the Dirac operator on surfaces
Ilka Agricola and Thomas Friedrich
[Abstract] [pdf-file]
math.DG/9806081, Journ. Geom. Phys. (30) 1 (1999), 1-22.
The Gaussian Measure on Algebraic Varieties
Ilka Agricola and Thomas Friedrich
[Abstract] [pdf-file]
math.DG/9804116, Fund. Math. 159 (1999), 91-98.
MR 1669706
Covering groups of the gauge group for the standard elementary particle model
Ilka Agricola
[Abstract] [pdf-file]
hep-th/9801011, MPI-PhT/97-44,
Nucl. Phys. B 518, Issue 3 (1998), 729-744.
Please note: According to general copyright rules, only
preliminary versions are made available here. For a final version of these
papers, please consult the corresponding journal issue or contact me to get a
reprint.
Questions and comments
concerning this page should be addressed per e-mail to
agricola@mathematik.uni-marburg.de,
Ilka
Agricola, last update 26.04.2021.
Impressum / Datenschutzerklärung (privacy policy and legal notice)